The first section of the quarter will involve a lot of factoring of polynomials. We will not spend time on reviewing factoring in lectures.

Instead, test yourself on the material below.

If you have a lot of difficulty with it, practice the factoring review sections in Enable.

Also, consider going to the Tutorial Center as soon as possible and signing up for a free individual tutor for the quarter.

- [1] Without trying to divide the number, how can you tell quickly if a number is divisible by
 - (a) 2 ?
 - (b) 3 ?
 - (c) 5 ?

(c)

1008

[2] Factor the following numbers completely into a product of powers of prime numbers.

Example:	8316	OR	2 8316
	$= 2 \times 4158$		2 4158
	$= 2 \times 2 \times 2079$		3 2079
	$= 2 \times 2 \times 3 \times 693$		3 693
	$= 2 \times 2 \times 3 \times 3 \times 231$		3 231
	$= 2 \times 2 \times 3 \times 3 \times 3 \times 77$		7 77
	$= 2 \times 2 \times 3 \times 3 \times 3 \times 7 \times 11$		11 11
			1
	$8316 = 2^2 \times 3^3 \times 7 \times 11$		
(a) 108			(b) 315

[3] Multiply and simplify the following products of polynomials.

Exan	nple: $(7x-4)(2x-9) =$	$14x^2 - 63x - 8x + 36 = 14x^2 - 71x + 36$
(a)	$-2x^2(x-4)(x+6)$	(b) $(6x+11)(3x+7)$
(c)	(9x-5)(4x+3)	(d) $4(5x+2)(8x-3)$

(d)

1617

Determine if the first polynomial is a factor of the second polynomial. [4] If yes, factor the second polynomial. If no, write "not a factor".

Is 3x - 7 a factor of $12x^2 + 14x - 35$? Example 1: To get the $12x^2$ term, the other factor must have a 4x term (since $(3x)(4x) = 12x^2$) To get the -35 term, the other factor must have a + 5 term (since (-7)(+5) = -35) But $(3x-7)(4x+5) = 12x^2 - 13x - 35 \neq 12x^2 + 14x - 35$ So. 3x - 7 is **not a factor** of $12x^2 + 14x - 35$ Is 8x + 3 a factor of $40x^2 - 41x - 21$? Example 2: To get the $40x^2$ term, the other factor must have a 5x term (since $(8x)(5x) = 40x^2$) To get the -21 term, the other factor must have a -7 term (since (+3)(-7) = -21) And $(8x+3)(5x-7) = 40x^2 - 41x - 21$ Is 4x - 9 a factor of $12x^2 - 19x - 18$? (b) Is 5x+2 a factor of $15x^2 + 39x + 14$? (a)

(d) Is 6x + 11 a factor of $12x^2 + 4x - 33$? Is 7x-5 a factor of $21x^2 - 44x + 20$?

Factor the following polynomials completely. [5] Factor out any leading negatives.

(c)

 $6-5x-x^2 = -(x^2+5x-6) = -(x+6)(x-1)$ Example 1: $3x^{2} - 60x + 108 = 3(x^{2} - 20x + 36) = 3(x - 2)(x - 18)$ Example 2: $150-6x^2 = -6(x^2-25) = -6(x+5)(x-5)$ Example 3: Example 4: $6x^2 + 7x - 5 = (3x + 5)(2x - 1)$ Example 5: $5x^5 - 60x^4 + 180x^3 = 5x^3(x^2 - 12x + 36) = 5x^3(x - 6)^2$ (b) $27x^5 - 12x^3$ $3x^2 + 24x + 48$ (a) (c) $6+11x-2x^2$ (d) $4x^2 - 20x + 9$ (e) $2x^3 - 10x^2 - 48x$ (f) $48+13x-x^2$